Saturday, November 7, 2015

Double laureate Marie Skłodowska-Curie & the hunt for elements

Marie Curie, details of linocut with glow-in-the-dark ink, by Ele Willoughby, 2014

The most well-known woman in the history of physics - or perhaps science - was born almost a century and a half ago today. The famous Polish-born, naturalized-French physicist and chemist Marie Skłodowska-Curie (7 November 1867 – 4 July 1934) was the first woman to win a Nobel prize, the only woman to ever win TWO Nobel prizes, and the only person ever to win in two different sciences: physics and chemistry! Happy birthday Madame Curie! You can read more about her in my post for Ada Lovelace Day, 2014.

Tuesday, October 13, 2015

Anna Atkins on Ada Lovelace Day

Ada Lovelace, 3rd edition
Ada, Countess Lovelace, 3rd edition linocut by Ele Willoughby
Today is the 7th annual international day of blogging to celebrate the achievements of women in technology, science and math, Ada Lovelace Day 2015 (ALD15). I'm sure you'll all recall, Ada, brilliant proto-software engineer, daughter of absentee father, the mad, bad, and dangerous to know, Lord Byron, she was able to describe and conceptualize software for Charles Babbage's computing engine, before the concepts of software, hardware, or even Babbage's own machine existed! She foresaw that computers would be useful for more than mere number-crunching. For this she is rightly recognized as visionary - at least by those of us who know who she was. She figured out how to compute Bernouilli numbers with a Babbage analytical engine. Tragically, she died at only 36. Today, in Ada's name, people around the world are blogging.
You can find my previous Ada Lovelace Day posts here. 
This year, I thought I'd take the opposite approach from last year. I wrote about Marie Skłodowska-Curie last year, despite her fame and the risk that she was likely the only women in STEM that many people can name. I chose to write about her because it was artificial to avoid her; she really did make incredible discoveries and lived an extraordinary life. This year, I've selected a scientist who is rather new to me, and who was not an icon of science. She was nonetheless a pioneer. I've selected her because she is precisely the sort of scientist we forget - especially if female. What she did was important, and cutting edge in her time, and while it may not have been epochmaking it was the sort of important, incremental, methodical work which represents much of the scientific entreprise, and most of the advance of science throughout history. I believe the concept of the "paradigm shift" might be useful, but it is often dangerously simplistic and leads to a false narrative of a series of great men (almost invariably it is a man who is selected to represent the bringer of the new idea) revolutionizing science. Science, and its history, is more often much more involved, non-linear, over-lapping and interwoven than this type of narrative presents. Lastly, I love that this particular scientist was working at the intersection of art and science.

Anna Atkins with ferns
This is a portrait of English botanist and photographer Anna Atkins (1799-1871), née Children. It combines both a hand-carved lino block portrait in dark silver ink, and a screenprint of the silhouette of fern leaves in cobalt blue ink, mimicking the cyanotypes she was known for. It is printed by hand on lovely Japanese kozo (or mulberry) paper, 11" x 14" (28 cm x 35.6 cm). (c) Ele Willoughby, 2015

Anna Atkins (1799-1871), née Children, was an English botanist and photographer. She is the first person to have illustrated a book using photographs, Photographs of British Algae: Cyanotype Impressions in October 1843. Note that: not the first woman, the first person. She lived at a time when it was possible to be a self-trained scientist, especially if you were middle or upper class and received an education and the financial freedom to devote your time to pursue your subject. (The Mary Annings of the world, who managed to make a name for themselves in science despite her class, religions and complete lack of financial ressources, are rare indeed). She was raised and instructed by her father, a naturalist, and her social circle included those who were developing (no pun intended) the latest, brand new photographic technology. So, she was at the right place at the right time. But that doesn't take away from the fact that she had the knowledge, skill, insight and ability to immediately see the utility of the method for descriptive science and to document a specific field of sub-field of botany, with her collection of the algae (seaweeds) of Britain. I think this should be understood as equivalent to a modern-day scientist keeping abreast of other fields of study and rapidly mastering a new high-tech tool to apply it to her field. Even William Henry Fox Talbot, who who invented the salted paper and calotype processes, precursors to modern photographic methods, was not able to publish The Pencil of Nature the first commercially printed photographic book, until eight months after she produced Photographs of British Algae: Cyanotype Impressions.

Her mother died when she was still an infant, but she was close with her naturalist father and received a much more scientific education than was common for women in her time. Her 250 detailed engravings of shells were used to illustrate her father's translation of Lamarck's 'Genera of Shells'. This translation was important to the nomenclature of shells, because her illustration allowed readers to properly identify Lamarck's genera. She married John Pelly Atkins in 1825 and devoted herself to botany and collecting specimen, including for Kew Gardens. In 1839, she became a member of the Botanical Society of the British Isles, one of the few scientific organizations open to women. She became interested in algae, after William Henry Harvey published A Manual of the British marine Algae in 1841.

Through her father, she was friends with both William Henry Fox Talbot and Sir John Herschel, who (amongst other things) invented the cyanotype photographic process in 1842. Within a single year of its invention, she self-published the first known book of illustrated with cyanotype photographs and was likely one of the two first women to make a photograph. She recorded her seaweed specimen for posterity by making photograms by placing the unmounted dried-algae original directly on the cyanotype paper. Atkins self-published her photograms in the first installment of Photographs of British Algae: Cyanotype Impressions in October 1843, and two further volumes in the next decade. She collaborated with Anne Dixon (1799–1864) to produce further books of cyanotypes on ferns and flowering plants and also published other non-scientific or photographic books. In 1865, she donated her collections to the British Museum.

I've shown her based on an early photographic portrait, along with some fern leaves which I've worked with directly, much how she illustrated her own specimen.

Have a look at her cyanotypes and a video of one of the surviving copies of her book.

(Cross-posted from the minouette blog)

Thursday, July 30, 2015

How the Earth's Crust is Born: Marie Tharp "girl talk" and the Mid-Atlantic Ridge

Marie Tharp and the Mid-Atlantic Ridge Linocut
Marie Tharp and the Mid-Atlantic Ridge,
9" x 12" linocut on Japanese paper, by Ele Willoughby, 2015
Happy birthday to American geologist and oceanographic cartographer Marie Tharp (July 30, 1920- August 23, 2006), whose pioneering, thorough and complete ocean floor maps made with her partner in science Bruce Heezen revealed the Mid-Atlantic Ridge. The mid-ocean ridge itself, based on their 1957 physiographic map, is illustrated behind her, along with the sort of echo sounder or precision depth recorder tracks she used, in front of her.

Tharp had struggled to find the the right university major; she wanted something she could do, and enjoy, but there were not many options for women in her day. More opportunities opened up during WWII and she took the chance to return to school and study geology and then math. Looking for something challenging (but not tedious) she contacted Maurice 'Doc' Ewing at Lamont-Doherty Earth Observatory at Columbia, who hired her to draft data, including the thousands of echo sounder profiles they were gathering. Women were still not allowed to participate in research cruises, but they could work with the data. Before long, Heezen came to Lamont and required so much drafting work that Tharp worked exclusively with him.

Scientists once imagined the ocean floor as a largely featureless plain. Early depth measurements were taken with lead weights (such as canon balls) and a whole lot of rope! As early as the late 19th century, such laboriously collected datasets began to hint at a broad rise in the centre of the Atlantic. By the mid 20th century, there was a push to try and map these submarine mountains.

Tharp spent months painstakingly "plotting, drawing, checking, correcting, redrawing and rechecking" profiles of the North Atlantic. The ship tracks across the Atlantic were a sparse web, but when Tharp compared half a dozen more or less parallel transects she noticed no only the general similarities of the ridge, but a V-shaped notch in the centre of all the profiles. She suspected they coincided because they indicated a rift valley all along the ridge crest. The early ideas about plate tectonics or the "continental drift" theory were still quite controversial and unpopular. Heezen dismissed Tharp's observation as "girl talk" for looking too much like continent drift - as in fact it was indeed a vital piece of the plate tectonics puzzle. We now know that surface of the Earth is itself a jigsaw puzzle of pieces known as tectonic plates, jostling one another at a stately, geological pace. Mid-ocean ridges are underwater volcanic mountain chains which roughly bisect all ocean basins. They are all cut by a rift valley which is the spreading centre. These rifts are where new crust is born, pushing upwards and outward. This drives the two plates on either side slowly apart over geological time. On our own timescales of everyday life, we notice the bumps in this slow ride: the sporadic earthquakes, rather than the slow creep (though today, we can meticulously measure both).

Tharp believed the rift was real though her contour maps hadn't convinced Heezen. In 1952, they began working on physiographic maps, which would show seafloor topography as if you were flying just above it, and the water were drained away. These had the advantage of really giving a sense of the variety of geology, from plains to mountains, seamounts to trenches. Also, unlike detailed contour maps, physiographic maps were not US Navy classified information, so Tharp and Heezen would be able to publish what they produced. Further, they were beginning to gather much better precision depth recorder data, which revealed far more features, along with better navigation to plot ships' positions along tracks more accurately. A second project in their research group involved plotting earthquakes, and Heezen insisted they work at the same scale. Heezen then noticed that ocean earthquake epicentre data also formed long lines - and in fact, when one map was placed above the other on a light table they found the earthquakes formed near continous lines along the Mid-Atlantic ridge right where Tharp had indicated there was a rift valley. Using the earthquake data to extrapolate and plot the rift position where there was no seafloor sounding data, they found that the rift extend landward into the Rift Valley of East Africa - a well-known, easy to observe terrestrial rift valley. Heezen was then convinced. They had discovered a worldwide mid-ocean ridge system, tens of thousands of kilometres long. Tharp was able to mine existing data to show the Mid-Atlantic Ridge extended to the south Atlantic and found similar features in other oceans. These all similarly lined up neatly with earthquake epicentres. Ewing and Heezen announced their findings in 1956. In 1957 Tharp and Heezen published their North Atlantic physiographic map; I've shown my version of their map behind her. The ridge snakes from top to bottom (north to south-south-west), above and almost mimicking the line of her arm.

They continued this work, extending to other oceans over the next 25 years, ultimately producing detailed physiographic maps of the world oceans. Their pioneering work mapping the oceanic plate boundaries, and showing their clear alignment with seismic data helped fuel the revolution in geology and geophysics, the paradigm shift of plate tectonics.

Tharp's work was largely in the background during her university career, though she won a number of prizes during her retirement and has continued to gain posthumous recognition for the importance of her work and observations. I was very pleased to see her recognized recently in Neil DeGrasse Tyson's Cosmos reboot. I want to bring her incredible insight and excellent work to a wider audience as both artist and marine geophysicist myself.

(cross posted from the minouette blog)

Wednesday, July 15, 2015

Jocelyn Bell Burnell and the LGM-1

Jocelyn Bell and the LGM-1
Jocelyn Bell and the LGM-1, linocut portrait by Ele Willoughby 2014

Happy birthday to astrophysicist Jocelyn Bell Burrell (born, 1943), who discovered pulsars! As I wrote previously:

In November, 1967, Jocelyn Bell (Burnell) was just a graduate student when she discovered the first radio pulsar (or pulsating star), a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. This radiation (light in the radio frequency band) can only be observed when the star is point towards us; so, like the light from a distant lighthouse, it appears to pulse at a precise frequency. She had been working with her supervisor Antony Hewish and others to construct a radio telescope to study quasars (quasi-stellar objects which emit radio waves). She noted some "scruff" on her chart-recorder, and then that the pulses were incredibly regular, occurring every 1.337 seconds. Hewish was initially scornful and insisted the regular pulses must be noise from a human made source. He first dubbed this object, emitting with such regularity 'LGM 1' for "Little Green Men 1", a playful joke about their uncertainty about what could emit radiation so regularly - obviously it could only be a communication from extraterrestrials hahaha! Only after she found other such sources, in different places with different frequencies, were her colleagues convinced and this lead to the development of the pulsar model. It is now known PSR B1919+21.

The 1968 paper announcing this discovery in Nature has five authors, lead by Hewish, followed by Jocelyn Bell. In 1974, Hewish won the Nobel Prize for this discovery, along with fellow radioastronomer Marlin Ryle). Jocelyn Bell was not included as it was assumed that the "senior man" was responsible for the work. This was controversial and has been condemned by many leading astronomers like Fred Hoyle (who with Thomas Gold was first able to explain the signals as due to a rapidly rotating neutron star). Jocelyn Bell Burnell herself has stated she was not upset. Bell Burnell has a great on-going career and won many honours after her impressive start, but her exclusion from the Nobel win, based on her own research strikes me and many others as one of the more blatant and egregious examples of gender bias in the selection of Nobel prize recipients.

Read the full post about how her beautiful dataset itself has lead a life of its own as a cultural meme.

Tuesday, June 23, 2015

The Enigma of Alan Turing

Alan Turing, linocut 2012, by Ele Willoughby

I've written previoulsy about Turing, for the centenary of his birth. To celebrate his 103rd birthday, I'm sharing my portrait of him complete with a schematic of the Enigma machine. I had long thought to portray Alan Mathison Turing, OBE, FRS (23 June 1912 – 7 June 1954), British mathematician, cryptanalyst, computer scientist, prophet and hero, but was stumped. My scientists are shown with images of something quintessential to their science, or the reason they are famous (or should be), but Turing had so many accomplishments, it wasn't obvious what to portray or how. Turing is the subject of this year's biopic The Imitation Game. You might recall his portrayal in Neal Stephenson's 'Cryptonomicon'. I was introduced to him many year ago by Douglas Hofstadter's 'Gödel, Escher, Bach'. You may also be familiar with the Turing Test or at least its portrayal in Blade Runner. Turing foresaw not only that machines might quite likely develop the capacity to think (after all, our brains are only made of matter, and complex systems of neurons, which either fire or not, much like an electronic switch), but that we needed an objective, double-blind test to determine whether something/someone was able to think, as early as 1950, when most people were only dimly aware of the existence of any sort of computer. But Turing quite literally defined what we now mean by computation itself (with his concept of Turing Machines) back in 1936. During the WWII he worked as a codebreaker and invented the device which was finally able to crack the notorious German cryptographic Enigma machine (in its more complex later incarnation)! His work undoubtedly saved many lives, and today we recognize him as a genius and a hero. In my print, I've included a simplified diagram of the mechanism behind the Enigma with its rotors or scramblers which acted as monoalphabetic substitution ciphers, literally scrambling letters at each turn. During, his all too short life, he also made important contributions to mathematical biology and explaining morphogenesis (the biological process that causes an organism to develop its shape) and the existence of Fibonacci numbers in biology. To indicate this later work, I've made the pattern of his tie look like the sort of Turing pattern produced by reaction–diffusion systems. This work presaged much later work in chaos theory.

Tragically, he lived in a time even more biased and bigoted than our own. Rather than recognizing the magnitude of his contributions to society during his lifetime, he was prosecuted for his homosexuality (still illegal in Britain in 1952) and forced to undergo chemical castration. He died two years later, after eating a cyanide-poisoned apple (determined by the coroner to be a suicide - something his mother vigorously denied). It is truly abominable they way he was treated; while we can't address the past injustice we can remember, recognize and celebrate his remarkable achievements today.

There are many serious looking photos of Turing. I chose one of him smiling as inspiration for this portrait. He clearly enjoyed his work, and had a sense of humour (evident in the silly names he gave mathematical techniques he discovered), so I chose to remember him laughing.

Sunday, May 31, 2015

Chien-Shung Wu & the Violation of Parity

Mme Wu
Madame Wu and the Violation of Parity, 2nd ed. linocut, 2012, Ele Willoughby

Happy birthday to Mme. Wu! Chien-Shiung Wu (May 31, 1912- February 16, 1997, Chinese-born American physicist, whose nicknames included the “First Lady of Physics”, “Chinese Marie Curie,” and “Madame Wu”) came up with a truly beautiful experiment to test whether the weak force conserves parity (whether beta decay would be the same if reflected in the mirror). In my print on the left I show Mme. Wu in her lab and a schematic diagram in the box of her beautiful experiment. On the right I show her reflection, as in the mirror, and in the box I show the mirror reflection of the experimental set-up and the shocking result, that the reaction is not the mirror opposite.

In 1956, theoretical physicists Tsung Dao Lee and Chen Ning Yang suggested that perhaps the weak force might not be the same 'through the looking-glass'. The idea that the "Law of Conservation of Parity" might be broken was hard to believe. The laws of physics are the same in the mirror for anything else. Face a friend, as in the mirror. If you drop a pencil from your right hand, and your friend mirrors you and drops a pencil with his or her left, the pencils will fall at the same rate. This is because Parity is conserved by the force of gravity - as it is with the electromagnetic force and even the strong (nuclear) force within atomic nuclei. Lee and Yang pointed out that no one had checked to make sure that the weak force, which controls beta decay in radioactive materials, also conserves parity. Lee convinced the brilliant experimentalist to test this.

Madame Wu did a subtle and technically difficult experiment with her collaborators which is shown schematically in the print. She took Cobalt-60 (shown as the cobalt blue sphere in the box), which is radioactive. Its neutrons spontaneously give off electrons and become protons. The electrons are the tiny blue dots. On the left, we see that the Cobalt-60 in an electromagnet (a wire wrapped metal horseshoe with a source of power). Because of the spiral-wrap of the wire, we know that the North pole of the magnet will be on the bottom (you can figure this out by mimicking the curl of the wire with the fingers of your right hand and look at the direction your thumb points). It turns out that the emitted electrons are given off preferentially towards the North pole.

Next, she reversed the set-up as in the mirror. On the right you see the horseshoe and wire spiral reflected. If you use your right hand to check the direction of the magnet field, you'll see that it is the opposite way; the North pole is now on the top. It turns out that the electrons are preferentially emitted upwards toward the North pole. Thus, beta decay IS NOT the same in the mirror! Madame Wu showed that a "Law" of physics did not hold! This result was staggering and shocked the physics world. Lee and Yang won the Nobel prize for their theoretical work. Many physicists thought Mme. Wu should have been included in this win.

She won many honours for her incredible career. Wu took part in the Manhattan Project (she is believed to be the only Chinese person to do so) and literally wrote the book on beta decay. She was the first: Chinese-American to be elected to the U.S. National Academy of Sciences; Female instructor in the Physics Department of Princeton University; Woman with an honorary doctorate from Princeton University; Female President of the American Physical Society, elected in 1975; winner of the Wolf Prize in Physics (1978); Living scientist to have an asteroid named after her. She won many awards and fellowships including: the Research Corporation Award 1958; the Achievement Award, American Association of University Women 1960; John Price Wetherill Medal, The Franklin Institute, 1962; Comstock Prize in Physics, National Academy of Sciences 1964; Chi-Tsin Achievement Award, Chi-Tsin Culture Foundation, Taiwan 1965; Scientist of the Year Award, Industrial Research Magazine 1974; Tom W. Bonner Prize, American Physical Society 1975; National Medal of Science (U.S.) 1975; the aforementioned Wolf Prize in Physics, Israel 1978; Honorary Fellow Royal Society of Edinburgh; Fellow American Academy of Arts and Sciences; Fellow American Association for the Advancement of Science; Fellow American Physical Society. And I bet you hadn't heard of her! I'm trying to redress that.

Wednesday, May 27, 2015

There be dragons...

"Carta Marina" by Olaus Magnus Licensed under Public Domain via Wikimedia Commons.

What to do at the edge of known territory, or how to demark the gaps in data in any sort of data visualization - geographical maps in particular - has long been an issue we grapple with. Medieval and even Renaissance mapmakers famously decorated the unmapped regions of their maps with fanciful creatures. These creatures would not fit with our modern conceptions of science, but in fairness, were not necessarily complete fabrications, but actual attempts to document animals which had been described by early explorers, but unseen by the mapmakers, rather than simple mythological ornaments. It's also been argued that they intended to scare foreign fishermen away from certain waters and reflected the idea land creatures had a marine equivalent (sea dogs, sea cows, even sea chickens apparently - see the Tetrapod Zoology review of Sea Monsters of Medieval and Renaissance Maps). The early map of Scandinavia, the Carta Marina by Olaus Magnus (1490–1557), is a prime example of the sorts of fabulous creatures of the maps. You can find the same creatures, including the ziphius (a whale sized creature) porcus marinus (like it sounds, essentially a pig mermaid, or boar-whale perhaps an attempt to depict a sea lion), and the rosmarine (or boar-whale, a tusked creature perhaps derived from the walrus) on many other maps, often appearing to be copied or inspired by previous maps.
A ziphius sea monster eats a seal, while attacked by another monster
(detail of the 1575 edition of the Carta Marina by Olaus Magnus)

Toronto artist Bailey Henderson has done a magical thing. She's created a series of bronze sculptures, Monstorum Marines, depicting these creatures in full textured 3D. Each is coloured with pigments and acrylics. The texture both micmics the lines of woodcut maps, like the Carta Marina, and enhances further, creating a naturalistic yet fantastic creature.

A ziphius eats a seal while biten by another creature in naturalist Conrad Gesner's 1560 Icones Animalium 

Famous cartographer Abraham Ortelius's 1603 edition of his well-known Theatrum Orbis Terrarum map includes this tame whale with fearsome teeth, he calls the Steipereidur, explaining that it "fights other whales on behalf of fishermen."
Bailey Henderson,
Ziphius et Orca
Cold cast bronze, acrylic paint, powdered pigment
17 3/4 x 11 1/4 x 7 inches

Henderson writes,
Ziphius is based on a sea monster commonly depicted on renaissance and medieval maps. It was believed to cut boats in half with its sharp dorsal fin. Here sculpted in a life-like form. Creatures like Orca are based on whales, and were commonly depicted on maps in various forms.

I see a little Ortelius and Gesner, by way of Magnus in this sculpture.

Rosmarine, or boar-whale by Gesner, 1555
detail, Carta Marina (1575) by Olaus Magnus, including the rosmarine or pinniped with his tusks
Bailey Henderson, Pinniped,
Cast Resin, acrylic paint
11 x 4.75 x 4.75

Sea pig, detail from Olaus Magnus' 1539 Carta Marina. This purported creature was compared to heretics that "distorted truth and lived like swine" (according to Hanah Waters, "The Enchanting Sea Monsters on Medieval Maps" on
Of the sea pig, or hog, Olaus Magnus wrote, "Now I shall revive the memory of a monstrous Hog that was found afterwards, Anno 1537, in the same German Ocean, and it was a Monster in every part of it. For it had a Hog's head, and a quarter of a Circle, like the Moon, in the hinder part of its head, four feet like a Dragon's, two eyes on both sides of his Loyns, and a third in his belly inkling toward his Navel; behind he had a Forked-Tail, like to other Fish commonly."(via strange science)

Bailey Henderson, Porcus Marinus
Cold cast bronze, powdered pigment, acrylic paint
16 x 8 1/2 x 7 inches

Be sure to the rest of her portfolio, for other sculpture creatures and illustrations.


Related Posts with Thumbnails